

Developing and deploying enterprise GIS solutions with ArcGIS Server and Explorer

Timothy R. Weisenburger ESRI

Agenda

Introduction ArcGIS Server Architecture

- Tuning and Configuration of Services
- Map Document Optimization
 - Dynamic Map Services
 - Map Caching
- Developer Options in .NET
 - ArcGIS Server Manager
 - The Web ADF
 - Non WebADF SOAP API
 - Help Info
- ArcGIS Explorer
 - Introduction
 - Customization and Configuration
 - Custom Tasks Geoprocessing and the SDK

ArcGIS Server 9.2

- Complete & Integrated server-based GIS
- Out-of-the-box applications and services
- Tremendous developer opportunities

Architecture of ArcGIS Server

Tuning and Configuration of Services

Meet the Benchmark Expectation

Service Instances, Processes and Threads

- Service Instance A single occurrence of a service that represents an application (MXD)
- Thread Equates to a service instance at the operating system level
- Instances are hosted by ArcSOC processes

ArcSOC.exe

Setting Capacity

- Limits number of service instances running on a specific host machine.
- Once this limit is reached, Server starts replacing least recently used instances instead of creating new ones.
- Serve large number of services only part of which are used at any point in time
 - Supports "limited resource" scenario
 - Serving a large library of maps
 - Individual services rarely used

Isolation

- High Isolation Example: 12 service instances equates to 12 ArcSOC.exe processes with one instance/thread each
- Low Isolation Example: 12 service instances equates to 3 ArcSOC.exe processes with up to four instances/threads each
- Recommendation: Use high isolation
 - A failed instance is "isolated" to one ArcSOC.exe process

Pooled Service Model

- State information (e.g., Current extent, layer visibility, etc.)
 maintained in web server / browser
- Scales better due to shared object pool

Non-Pooled Service Model

- Typically holds its reference to the service for the duration of the application's session
- Number of users on the system can have no more than a 1:1 correlation with the number of running service instances
- Do not use internet connections to non-pooled

Configuring Pooled / Non-Pooled Instances

- Define Min-Max instances
- Typically 2-4 instances per SOC CPUs/cores
 - Depends on relative performance of data source
 - Depends on local / ArcSDE data
- Instances are distributed across all host servers

Wait Time and Usage Time

- Wait Time
 - Time it takes to Request a Service
 - Handle the Error
- Usage Time
 - How long can a service be used
 - Geoprocessing VS Mapping
 - Failure or Long Processes

Statistics Tracks these Times

Scaling Out – Adding More Computing Power

Dynamic Map Services

Best Practices – Map Services

 We encourage the use of cached map services and only when necessary use dynamic map services!

Considerations:

- Know your audience and their needs requirements
- Understand the trade-offs

Optimize Your Map Services - The MXD

- Maps can include both dynamic as well as static layers
- Design your maps for the Web
 - Consideration with single source to multiple users
 - Minimize the data push
- Dynamic Layers = rapidly changing data
 - Roads symbolized by current snow depth
 - Electrical network showing the latest posted work order
 - Tracking Data / Updated GPS Point Data
- Static Layers = more slowly changing data
 - Landuse / Landcover
 - Road Network
 - Basemap data
 - Imagery
- Data Location and Access and Bandwidth Issues
 - SDE The Fastest
 - File based Disk Contention
 - Don't Use Outside Services (ArcIMS, ArcGIS Server, WMS)
 - STAY WITH YOUR LOCAL RESOURCES
 - Outside resources are better utilized at the application level

General Guidelines – Dynamic Maps

- Show relevant information
 - Start simple (additional layers can be toggled on by user)
 - Use field visibility (hide unnecessary attributes)
- Use scale dependencies
 - Use data appropriate for the given scale (generalize if necessary)
 - Display similar number of features at all scales for consistent user experience
- Remove Unused Layers and Data Frames
- Make sure data projections is the same as the Data Frame
- Use Definition Queries

Point, Line & Polygon rendering

- Points
 - Use single layer Simple or Character markers for best performance
 - Use EMF instead of bitmaps
 - Use Integer (vs. character) fields for symbol values
 - Avoid halos, complex shapes, masking
- Line & Polygons
 - Use ESRI_Optimized style
 - Outlines for all fills are simple lines instead of cartographic lines
 - Picture fills are EMF-based instead of BMP-based
 - Improves drawing performance by > 50%
 - Avoid cartographic lines (also includes polygon outline!)

Text and Labeling

- Use annotation instead of labels
- Use indexed fields (reduce label SQL query number and complexity when possible)
- Use label and feature conflict weights sparingly
- Avoid special effects (fill patterns, halos, callouts, backgrounds)
- Avoid very large text size (60+ pts)
- Avoid Maplex for dynamic labeling
- Avoid overuse
- Avoid Highway Symbols
- Use Scale Dependencies

Mapping Application Image Size

 Map Request -600×400

JPEG = 70 KB

-1200 x 800

JPEG = 161 KB

- Recommendation:
 - Use reasonable output image size to support application while minimizing impact to network

Output Image Type

- Output image sizes vary by format and data type
 - -600 x 400 Example

- Recommendation:
 - Use appropriate output type to support application while minimizing impact to network. Generally raster data is best served in a JPEG format, while vector data is best served in PNG format. Use PNG32 to support transparency.

Cached Map Services

Cached Map Service

- Tiles pre-rendered at fixed scales
- Rapid display of static base maps
- Richer symbols and more information

What types of maps should I cache?

Base maps

Maps that don't change frequently

Maps you won't be editing

As long as the Cache is available – Map Image requests are not required Freeing up the Server Resources

Classic Dynamic Mapping Trade-Off

Quality VS.

Speed

- Shaded Relief
- Transparent Layers
- Maplex Labeling
 - 1.5 Seconds

- Low-res relief
- Solid colors
- Annotation
 - 4 Seconds

If you can cache your map, then there is no need to trade quality for performance!

Generating the map cache

- The caching process can be a very time consuming process.
- Tips For Large Caches

Invest First in a Small Area for all Scales

Make sure relevant data is visible

Select Appropriate Scales

Do all the Areas Require all Scales?

Build Smaller Area Caches First

Reset your Full Extent

Specify Extent Areas (Cities)

Use the Update Cache Method

Create Scales First to Represent All

Select Scales Appropriate for each Area

```
1st level 1:16,000,000
                            1 tile
2nd level 1:8.000.000
                            4 tiles
3rd level 1:4.000.000
                           16 tiles
4th level 1:2,000,000
                           64 tiles
5th level 1:1,000,000
                          256 tiles
6th level 1:500,000
                        1,024 tiles
7th level 1:250,000
                        4.096 tiles
8th level 1:125.000
                       16.384 tiles
9th level 1:62,500
                       65.536 tiles
10th level 1:31,250
                      262,144 tiles
```

What type of cache should I create?

- Fused cache
 - -Includes all layers in map in one "fused" image
 - -Good performance
 - -Can't toggle layers on and off

- Multilayer cache
 - -Can choose groups of layers to be cached separately
 - Performance decreases with number of layer groups
 - -Can toggle layers on and off

Help

- Local Help
- http://Blogs.esri.com
- http://webhelp.esri.com

The .NET Development Environment in ArcGIS Server 9.2

ArcGIS Server 9.2: Software Development Kit

- Build and deploy web & enterprise geospatial applications and services
- Productivity boost with out-of-the-box IDE integration
- Software Development Kit (SDK) includes :
 - –.NET components
 - Web ADF
 - Mobile ADF
 - Java components
 - Web ADF
 - EJB ADF

Getting Started - Developing Web Applications with ArcGIS Server 9.2

Web Application Developer Framework (Web ADF)

- ArcGIS Server Manager
 - Build Web Applications
- Supports multiple data sources
 - ArcGIS Server, ArcIMS, ArcWeb, WMS custom, etc.
- Multi-source controls
 - Map image blending
 - AJAX enabled
- Task Framework and Web Tasks

Developing Web Applications

- Use Visual Studio 2005 2.0 Framework
 - -OR Visual Studio Web Developer Express (FREE!!)
- Choices on how to get started developing
 - Beginner: Edit the web application created in the Website Manager
 - Intermediate: Start from a template integrated into the development environment Web Controls
 - –Advanced: Common Data Source API, Data Source Specific API

Paths of Development

Increasing complexity and functionality

DEMO

ArcGIS Server Manager
ADF Template
ADF Controls

The Common Data Source API

Common Data Source Cont.

- All data sources implement a common set of interfaces
 - ArcGIS Server
 - -ArcIMS
 - ArcWeb Services
 - Open Geospatial Consortium (OGC)
 - Graphics
- Provides a generic way for Web controls to access functionality
 - Draw a map, query a layer, geocode
- See ESRI.ArcGIS.ADF.Web.DataSources
- Common Functionalities

.NET Classes that reside on the Web Server

NOT ArcObjects!

Advantages of the Common Data Source API

- Removes business and GIS logic from Web controls
- Easy to program against different data sources
- Possible to implement your own custom data sources

Users will be able to develop most of their needs from the Common Datasource API

Data Source-specific APIs

- Each data source exposes a different set of functionality
 - ArcGIS Server
 - SOAP, ArcObjects
 - -ArcIMS AXL
 - ArcWeb Services SOAP API

- What does this mean?
 - Many other data sourcespecific classes available
 - More business/GIS logic
 - Different APIs use different communication protocols
 - Requires different programming patterns for each data source

ArcGIS Server Local: Available ArcObjects

- Most of the Engine libraries
- Capabilities
 - Display
 - Symbolization
 - Analysis
 - Query
 - Data access
 - Editing
 - Output
- Also access extensions

ArcObjects library reference ESRI.ArcGIS.ADF ★ ESRI.ArcGIS.ADF.Connection 3DAnalyst Animation ArcWeb Controls ■ DataSourcesGDB DataSourcesNetCDF Display Geodatabase
 Geoda GeodatabaseExtensions Geoprocessing GeoProcessor library and tool reference Maplex MilitaryAnalyst MOLE NetworkAnalysis • NetworkAnalyst Output Schematic SpatialAnalyst SystemUI TrackingAnalyst Utility

Web server **GIS Server - SOM/SOC** object **RahColor** Web Service **Polygon** Web Service Value object end point Color object **Proxy** Polygon object **IRequestHandler** Server object **DCOM** (end point) **Proxy Web Application**

SOAP API - Web ADF or NOT!

MapServer, Geocoder, Geoprocessing API's All ArcGIS Services have a Web Service End Point

ServiceCatalog
MapServer
GeocodeServer
GPServer
GeoDataServer
GlobeServer
NAServer

SDK Developer samples

Configuration and Customizing ArcGIS Explorer

What is ArcGIS Explorer?

- A client for ArcGIS Server, offering an easy way to deliver access to GIS content and capabilities.
- A free, lightweight, easy to use desktop application that can access, integrate, and utilize GIS services, geographic content, and other web services.

More than an exploration tool, it's a way to deliver and publish ArcGIS capabilities to your users

ArcGIS Explorer

Key Points

- An integrated part of the ArcGIS System
- Supports 2D and 3D (Globe) services
- Can fuse multiple services
 - ArcGIS Server, ArcIMS, WMS, Any web service
- Many base maps available (ArcGIS Online)
- Local content support
 - Shapefile, file GDB, KML, imagery, text, .csv, ...
- Tasks
- Can be centrally managed
- Free to download, free for any use

How do you get ArcGIS Explorer?

- Part of ArcGIS
 - Installed and configured with ArcGIS Server
- Download from ESRI Web site
 - http://www.esri.com/arcgisexplorer
 - http://www.arcgisexplorer.com

Demo

Introduction to ArcGIS Explorer

ArcGIS Explorer Configuration

ArcGIS Explorer

User Preferences

- Look and Feel of Globe
 - Sun shading, clouds, halo, stars...
- Map Display and Control
 - Navigation, flight control
 - Units
- Mouse
 - Button configuration, gestures, speed...
- Cache and memory management

Setting the ArcGIS Explorer home server

- Home server configures settings for Explorer clients
 - Default map
 - Ability to open or save documents
 - Appearance (skin file)
 - Others
- Modify settings for your home server
 - Edit configuration settings in E2Config.xml file
- ESRI is the default home server
 - To change, click File > Set Home Server
 - Define home server using the appropriate URL

C:\Documents and Settings\tweisenburger\Application Data\ESRI\ArcGIS Explorer

ArcGIS Explorer customization: skin files

C:\Inetpub\wwwroot\ArcGIS\Explorer

Based on Home Server Connection

- Define basic appearance
 - Default skin for your install
 - For users of your home server
 - Font and background colors user interface images, ToolTips, etc.
- Three skins: blue, green, silver
 - XML file and associated images
 - Applied according to current operating system settings
- Edit default skins
 - Define different colors
 - Point to different images


```
<BorderColor type="Color">RGB(0,0,128)</BorderColor>
<MenuFont type="Color">RGB(255,0,0)</MenuFont>
<TaskFont type="Color">RGB(255,0,0)</TaskFont>
<MenuHotFont type="Color">RGB(221,221,255)</MenuHotFont>
<TaskHotFont type="Color">RGB(0,0,128)</TaskHotFont>
<GeneralBackgroundColor type="Color">RGB(207,225,249)</GeneralBackgroundColor>
<MenuAndTaskStartColor type="Color">RGB(158,190,245)</MenuAndTaskStartColor>
```

NMF Files

- NMFs are how you share maps
 - -put on website or fileshare
- Can contain
 - Maps and settings
 - Layers
 - Results
 - -Tasks
- XML
 - -published schema
 - allows programmatic creation, editing

ArcGIS Explorer Maps, Tasks, Results

- A map (NMF) is a container for
 - Layers, Tasks, Results,
- XML


```
    - <esri: ArcGISExplorerDocument</li>

   xmlns:esri="http://www.esri.com/schemas/ArcGIS/9.2"
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns:xs="http://www.w3.org/2001/XMLSchema">
 - <E2MapDescription xsi:type="esri:E2MapDescription3D">
     <Name>PerfTest July28</Name>
     <Description />
     <Copyright />
   </E2MapDescription>
 - <E2Location xsi:type="esri:E2Location3D">
   - <Tarqet xsi:type="esri:E2Point">
     - <Point xsi:type="esri:PointN">
        <X>-77.6469227857029</X>
        <Y>43.1961587650683</Y>
        <Z>-1.27247105994551E-08</Z>
      </Point>
     </Target>
   - <Observer xsi:type="esri:E2Point">
     - <Point xsi:type="esri:PointN">
        <X>-77.8044981879237</X>
        <Y>43.183867132051</Y>
        <Z>32039.9006352357</Z>
      </Point>
     </Observer>
   </E2Location>
```

ArcGIS Explorer Notes

ArcGIS Explorer Tasks

- Default Tasks
 - Powered by ArcGIS Online
- Custom Geoprocessing Tasks
 - Authored using ArcGIS Desktop and Published using ArcGIS Server
 - No programming necessary
- SDK for extending tasks, or building new tasks

ArcGIS Explorer Tasks

Task Manager

- Get, Export, Delete
- Arrange, Group

Providing Web GIS functionality in 3 steps

- Author create geoprocessing functionality
 - Geoprocessing models

Publish – create the GIS service

- 2. Toolbox (.tbx)
 - Map document (.mxd)

Consume – use the service

- ArcGIS Desktop
- ArcGIS Explorer
- Web mapping application
 - Custom clients

Adding custom tasks to ArcGIS Explorer

- Stored in Tasks folder in user profile directory
 - Read when Explorer starts
 - Appear in Task Manager

- Tasks can be added
 - By navigating to an .nmf file
 - Opening a map containing task information
 - From a geoprocessing service

Custom Tasks for ArcGIS Explorer

- Developers Create Custom Tasks to connect to new web services
- Can also
 - Refine existing user interface
 - Perform local operations

The Software Developer Kit

 ArcGIS Explorer .NET SDK provides resource to create custom tasks

heters();

String();

- Conceptual Documentation
- Component Help

class ViewInBrowserTask : Task

Insert Snippet: ArcGIS Explorer >

Process.Start(url);

- Visual Studio 2005 Integration

public override void Execute (TaskContext taskContext)

Iterate the layers in the CurrentView

ParameterSet parameterSet

string url = parame Create a ShellResult

- Object Model Diagram

E2API Classes

- Application and View classes
- Layer classes
- Task framework classes
- Result classes
- Geometry classes
- Feature classes

Demo

Default Tasks
Geoprocessing Tasks
Custom Tasks

ArcGIS Explorer Resource Center

Direct Access Resource Site

- Tuning and configuring services
 - http://webhelp.esri.com/arcgisserver/9.2/dotNet/manager/publishing/tuning_services.ht
 m
- Map Design Considerations for Dynamic Maps
 - http://webhelp.esri.com/arcgisserver/9.2/dotNet/manager/publishing/map_service.htm
- Creating Fill Symbols
 - http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?id=305&pid=297&topicname=Creating fill symbols
- Detailed view of all the web adf controls
 - http://edndoc.esri.com/arcobjects/9.2/NET Server Doc/developer/ADF/control overvie w.htm
- Overview of programming with the common datasource API.
 - http://edndoc.esri.com/arcobjects/9.2/NET_Server_Doc/developer/ADF/resources.htm
- Overview of ArcIMS and ArcGIS Server data source specific APIs:
 - http://edndoc.esri.com/arcobjects/9.2/NET Server Doc/developer/developer apis over view.htm

Questions?

Timothy R Weisenburger tweisenburger@esri.com